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Abstract—A systematic procedure generalized to derive the variational
expressions for electromagnetic and/or acoustic field problems is pro-
posed. It is shown that the variational expressions useful to treat the
systems involving electromagnetic waves or acoustic waves or both can be
formulated systematically all from the simple and basic principle of least
action point of view.

I. INTRODUCTION

WIDESPREAD variety of miniaturized microwave
Acircuits and functional devices can be realized by
means of the coupling between electromagnetic waves and
acoustic waves. However, the theoretical analysis of those
circuits and devices is not easy, since both Maxwell’s
equations and Newton’s equation must be solved simulta-
neously. Therefore, the suitable approximate methods of
analysis are desired. The variational method is one of the
powerful techniques to treat such problems.

In applying the variational method, the most important
and difficult problem is to find the appropriate variational
expressions. The authors have proposed previously the
unified procedure to derive the variational expressions for
the electromagnetic field problems from the principle of
least action point of view [1]. In the present paper, not
only the electromagnetic fields but also the acoustic fields
are taken into account, thereby enabling one to derive the
various variational expressions for the electromagnetic
and/or acoustic field problems systematically from the
same principle. To make clear the point of an argument,
discussions are limited to the system in which the coupling
occurs between the electric fields and the acoustic fields,
ie., the electroacoustic wave systems. However, the
method given in this paper is applicable to derive the
variational expressions for the magnetoacoustic wave sys-
tems as well. As typical examples, the variational expres-
sions for a resonant frequency and a propagation constant
of the electroacoustic wave systems are derived systemati-
cally all from the least action principle.

II. THE PRINCIPLE OF LEAST ACTION

The action J for the system which contains both elec-
tromagnetic waves and acoustic waves consists of three
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terms as follows:
J=Ji+Jp,+J,

(1)
where Jy, J» and J, rtepresent, respectively, the terms

relating to the electromagnetic field, the acoustic field and
the coupling between them. Let us assume that the materi-
als involved are linear but inhomogeneous and anisotropic
in general. The action J; is then expressed as [1]

J= f, 0" dt fV( % {E(r,0)-&(r,1)-E(r,1)

—H(r,t)-ji(r,1)-H(r,t)}
+A(r,6)J(r,t)—p(r,t)o(r, t)) dv
04 (r

@
®3)

where r and ¢ are the vector dlstance from the origin and
the time, E and H are the electric and the magnetic field
intensities, 4 and ¢ are the vector and the scalar poten-
tials, J and p are the electric current density and the
electric charge density, and & and ji are the tensor permit-
tivity and the tensor permeability, respectively. ¢, is the
initial time and ¢, is the final time.

The action J,, relating to the acoustic field is defined as

Jm=f’t' dtf( m(r ){a"(' ’)} Lstr0):e(r,8):80r,0)
+F(r,t)-u(r,t)) dv (4)

E(r,t)=— ) —Voé(r,t)

7~

S(r,1)= % { Vu(r,7)+ (Vu(r1) } =V.u(r) (5)

where m and u are the mass density of the medium and
the particle displacement field, S is the strain field, F and
e are the body force and the elastic stiffness constant,
respectively, and the tilde ~ designates a transposed
tensor.

Limiting our discussions to the electroacoustic wave
systems, the term J,, relating to the coupling between the
electromagnetic field and the acoustic field is given as

o= [t " [V( 5 E(r.tye(r,): S(r,1)

+8(r,1): e(r,0)-E(r, t)}) d (6)
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where e and e are the piezoelectric stress constants. Using
the foregoing equations, (1) is reduced to

J=[" dtfy(%(E-D—H-B)

+A-J— p¢+1m(?;:) %S:T+F-u)dv @)
where

D(r,t)=é(r,t)-E(r,t)+ e(r,t): S(r,1),
I(r,t)= —e(r,t)-E(r,t)+ c(r,1): S(r 1),

B(r,H)= ji(r,£)-H(r,t) (8)

and T is the stress field. In particular, in the source free
case (J=0, p=0, F=0), (7) is reduced to the following
form by using the quasistatic approximation (E= —V¢):

J= f dtf( ED+ (%”) %S:T) do. (9)
This expression coincides with the equation given by Auld
[2]. In other words, (7) contains Auld’s equation (9) as its
special case.

Let us consider next another expression of the principle
of least action for the electroacoustic field in the
frequency domain. Extending the time interval [#,,¢,] to
(—o0,) and applying Fourier transformation, the in-
tegration with respect to time ¢ in (7) becomes the integra-
tion with respect to the frequency f, and thus the time
domain problem of the electroacoustic fields can be trans-
formed into the frequency domain problem. Assuming
that the materials involved are dissipationless, and have
neither permanent electric polarization nor permanent
magnetic polarization, the components of the tensor
material constants have the following relations:

; =
(10)

and the stress matrix T is symmetric. Making use of (10),
the time domain expression (7) becomes the frequency
domain expression in the form

Cijl ™ cklz

T=[Tdff (B~ H*pH+ AT+ 4% pp*—p%
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81,,=f0°° dffV(Su*-(V-T+mw2a+F)) dv

~[Ta[  (Towyndstee (14)
0 S+,

where the terms designated as cc represent the complex
conjugate of the first two terms on the right-hand sides of
the preceding equations, S is the surface which encloses
the volume ¥, and S, is the discontinuous boundary of
the materials involved. Therefore, in order to make J
stationary, 4, ¢, and # in the region where the materials
are continuous must satisfy the following:

V-D=p (15)
VX H=juD+J (16)
V-T=—mwu—F. (17)

Further, from the frequency domain expression of (3), the
following is yielded:

VXE=—jwB (18)

where
B=VXxA. (19)

Equations (15)-(18) represent the Maxwell’s equations
and the Newton’s equation. It should be pointed out,
therefore, that if A, ¢, and # are determined in such a
manner that for those 4, ¢, and u the action J becomes
stationary, the Maxwell’s equations, and the Newton’s
equation are satisfied. In other words, the physically re-
alizable electromagnetic and acoustic fields satisfying the
Maxwell’s equations and the Newton’s equation can be
derived from the least action principle.

ITII. VARIATIONAL EXPRESSIONS FOR RESONANT

FREQUENCY

In this section, we shall derive the variational expres-
sions for the resonant frequency of the electroacoustic
resonating systems from the action J obtained in the
preceding section. We will assume that the resonating
system is composed of the linear, nondispersive, and dis-

+S8*:¢-E+S:e* E*+ mo’u*-u—S*:c:S+Fu*+ F*-u) do. (11)

The first-order variations of the action J due to the small
variations in ¢, 4, and u are derived, respectively, as

87, [~ df [ (56(V-D~p)) do
- [T dff  (3¢*D)nds+ec (12)
0 S+S,
8, f0°° dffy(ﬁA*~(ij+J—VxH)) dv

+f°°df (Hx84*ynds+cc (13)
0 S+S,;

sipationless piezoelectric materials. The resonating system
is assumed to be source free, ic., J=0, p=0, and F=0 in
the region V (Fig. 1). Then, the action J given by (11) is
reduced to

I= [T @[ (BeE-H*pHt S E
0 Vv
+S8:e*-E*+ mo'u*-u—S*:c:S)dv (20)

where ¥V is the region within the resonator. In (20), inde-
pendent variables are 4, ¢, and u. Let us transform A, ¢,



686

Fig. 1. Resonator. Volume ¥ enclosed by surface S. S, indicates the
surface across which materials involved change discontinuously.  is a
unit vector normal to the boundary surface.

jf (H*-VXE—E* VX H—v*-(V-T)—=V,0:T% do+jf (H X E*+ T-0*)-n ds
_ 14 S+Sd
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L=f(E*-é-E+H*-ﬁ-H+mv*'v+S*:c:S
| 4

—é{H*-vxE—E*.VXH-u*-(V-T)—st:r*}) do

-1 (H X E*+ T-v*)n ds.

26
WJists, (26)

The subscript i will be omitted hereafter for simplicity.
The stationary problem for J is thus reduced to that for L.
Since L given by (26) is zero for the correct values of the
field quantities E, H, v, and S as shown in the Appendix,
we obtain the variational expression for the resonant
frequency of the electroacoustic resonating systems as
follows:

@7)

w=

f(E*-é-E+H*-ﬁ-H+mv*-v+S*:c:S)dv
v

and « into E, H, v, and S by means of the following:

=—jwAd—V¢
H=("1VxA4
v=jou
S=V.u (21)

where v is the particle velocity. Further, substituting the
following identity

Voo*: T=V - (Tv*)—0v*-(V-T) (22)

into (20) and applying the Gauss® theorem, we get the
action for J in the form

o0
J=f dff (E*-é-E+H*-ﬁ-H+mv*~v+S*:c:S
0 Vv

-—é{H*-VxE—E*-VxH—v*-(V-T)—V:v:T*} dv

” .

- [T (L{HxE*+ T~v*})-n ds. 23)
0 S+S,\@

Since the electroacoustic field in a resonator can be ex-

pressed by a linear combination of the electroacoustic

fields of the individual resonant modes, the field quanti-

ties, E(r,w) for instance, can be written in the form

E(r,0)= 3 8(0—a)E(r)

where E/(r) and w; are the electric field and the resonant

frequency of the ith mode, respectively, and &(w—w;)

signifies the delta function. Substituting (24) into (23),

carrying out the integration with respect to the frequency

J, and assuming that there exists only ith mode alone at
= — o0, we get

(24)

J=L3(0) (25)

where

where E, H, v, and S are the functions of position vector
r, and T is given by

T(r)=—e(r)-E(r)+c(r):S(r). (28)
The trial functions for E, H, v, and S in (27) must satisfy
the following conditions:

1) nX8E and 8v are zero on S. Note that if S is a
magnetic wall, the former condition (nX3E=0 on §) is
not required, and if S is a stress-free boundary, the later
condition (8v=0 on §) is not required.

2) n X 8E and dv are continuous across S,.

In the quasi-static case, E and H in (27) can be ex-
pressed as

E(r)=—Vo(r)

H(r)=0. (29)
Substituting (29) into (27), we get the variational expres-
sion for the resonant frequency of the electroacoustic
resonating systems under the quasistatic approximation as
follows:

—jf (v*-(V-T)+V,0: T* du+jf (T-v*)-n ds
172 S+,

W=

f(V¢*~é- Vo+mo*-v+S*:¢:8) dv
14
(30)

where

I(r)=e(r)-Vo(r)+c(r):S(r). (1)

From the first-order variation of w given by (30), the
conditions which must be satisfied by the trial functions
for ¢, v, and S can be obtained as follows:

1) 6¢ and 8v are zero on S. Note that if S is a
stress-free boundary, the later condition (5v=0 on S) is
not required.

2) 8¢ and dv are continuous across S,,.
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Further, by setting E=H=0 in (27), we obtain a varia-
tional expression for the resonant frequency of the
acoustic wave resonator. On the contrary, if we set v=S§
=0, (27) becomes a variational expression for the reso-
nant frequency of the electromagnetic wave resonator
which coincides with the result obtained previously [1].

IV. VARIATIONAL EXPRESSIONS FOR PROPAGATION
CONSTANT

Let us derive next the variational expressions for the
propagation constant of the electroacoustic waves travel-
ing along a uniform wave guiding system. It is assumed
that the materials involved are inhomogeneous and aniso-
tropic, in general, but are linear, nondispersive, and dis-
sipation free. Fig, 2 illustrates the wave guiding system
under consideration which is made of the piezoelectric
material and is uniform in a direction of wave propaga-
tion z.

To derive the variational expressions for the propaga-
tion constant, we divide the volume integral in (26) into
the surface integral over the transverse plane S(xy plane)
and the integral along the propagation axis z. Further,
transforming the integration with respect to z into the
integration with respect to the propagation constant 8 by
performing Fourier transformation, the following equa-
tion is obtained.

S ab( [ @) i)

27w

"E(x,y,8)+wH(x,p,8)*-p(x,y)-H(x.y,B)
+om(x,y)o(x,y,8)*-v(x.y,B)
+wS(x.y,8)* :e(x,y):8(x.,8)
—j{H(x.y,B)*-V, X E(x,y,8)
—E(x,y,8)*-V,XH(x,y,B)
~o(x,y,8)*- YV, T(x.y,B)

= Vo(x.p,8): T(x.y,8)*}

+ Bi; {E(x.y,8) < H(x.y,8)*
—H(x,y,8) X E(x,y,B)*
=T(x.y,8)0(x.y,B)*
—T(x,y,8)*v(x.y,B)}) ds

=J fc+ JHCoy, B> E(x.y,B)*

+ T(x,y,B8)v(x,y,B)*)n dl). (32)
In the foregoing equation, C represents a closed contour
in the transverse plane as shown in Fig. 3. For the open-
type wave guiding structure, C must be a closed contour
enclosing the wave guiding structure at infinity, while in
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Fig, 2._ Wave guiding structure containing inhomogeneous and aniso-
tropic materials. Direction of wave propagation is in z axis along
which the structure is uniform.

Fig. 3. Contours used in the evaluation of integration.

the case of the closed metallic waveguide, C is a cross-
sectional boundary of the guide wall. C, indicates the
line in the transverse plane across which the material
constants change discontinuously. E(x, y, B) and
H(x,y, B) are the Fourier transforms of E(r) and H(r),
and V, and V, indicate the transverse parts of the operator
V and V_, respectively.

The electroacoustic fields of the wave propagating in
the z direction can be expressed in terms of the linear
combinations of the electroacoustic fields of each propa-
gation mode. Hence the field quantities, E(x,y,B8) for
instance, can be written in the form

E(x,y,8)= 2 8B+ B)E(x.y) (33)

where E(x,y) represents the electric field of the ith mode,
and B, is its propagation constant. Substituting (33) into
(32), carrying out the integration with respect to the
propagation constant 8, and assuming that there exists

only ith mode alone at 1= — o0, we get
_ %)
J= e M (349
where

M=f(wE*-é-E+wH*-ﬁ~H+wmv*-v+wS*:c:S

S
—j(H*-V,X E—E*-V,X H—v*-V T~V v: T%)
— Bi,(E X H*— H X E*— T-v*— T*-v)) ds

[  (HXE*+Tv*)nd.
C+Cy

(35)
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The subscript i has been omitted for simplicity. Thus the
stationary problem for L is reduced to that for M, and
hence we can determine the correct values of E, H, v, S,
and B in such a way as M becomes stationary for the
correct values of those quantities. M given by (35)
vanishes for the correct values of E, H, v, and .§ as shown
in the Appendix. Therefore, by steps similar to those used
in the preceding section, we get the variational expression
for the propagation constant 8 as follows:

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 9, SEPTEMBER 1978

1) 6u and 8¢ are zero along C. Note that if C is a
stress-free  boundary, the former condition (8u=0 along
C) is not required.

2) 6u and d¢ are continuous across C,.

V. CONCLUSION

A systematic approach generalized to derive the varia-
tional expressions for not only electromagnetic field but
also acoustic field problems has been proposed. It has

j:g(wE* & E+wH* i H+omv*-v+wS*:c:S—j(H* YV, X E—E*-V,XH—v*-V T—V, v:T*)) ds

—j (HXE*+T-v*)ndl
C+Cy

(36)

f(iz-(ExH*—HxE*-—T-v*—T*-v))ak
S

where the variables E, H, v, and § in (36) are functions of
the transverse coordinates x and y, and T is given by

T(x’y)= -—_e(x,y)-E(x,y)+c(x,y) :S(xsy)' (37)

By calculating the first variation of 8, we get the condi-
tions of the functions for E, H, v, and S as follows:

1) n X 6E and v are zero along C. Note that if C is a
magnetic wall, the former condition (nX 8E=0 along C)
is not required, and if C is a stress-free boundary, the later
condition (6v=0 along C) is not required.

2) nX 8E and v are continuous across C,.

By changing the line integral terms in (36) appropriately,
the alternate variational expressions can be yielded [1].
The conditions to the trial functions are altered also from
those stated above.

In the quasi-static case, E and H in (26) can be ex-
pressed in the form given by (29). According to the similar
procedure as before, divide the volume integral into the
surface integral over the transverse plane S(xy plane) and
the integral along the propagation axis z, and transform
the integration with respect to z into the integration with
respect to the propagation constant 8 by performing
Fourier transformation. Then, we get the following varia-
tional expression for a propagation constant under the
quasi-static approximation.

B=

been shown that various variational expressions for elec-
tromagnetic fields, acoustic fields, and electroacoustic
fields can be derived systematically all from the least
action principle. To make clear the point of an argument,
the discussions have been limited to the system in which
the coupling occurs between electric and acoustic fields.
However, the method given in this paper is applicable to
derive the variational expressions for the magnetoacoustic
systems as well in which the magnetic and acoustic fields
are coupled together. It has been shown that by determin-
ing 4, ¢, and # in such a manner that the action J
becomes stationary for those 4, ¢, and #, the associated
electromagnetic and acoustic fields satisfy the Maxwell’s
equations and the Newton’s equation. It follows that we
can expect to derive the various variational expressions
for electromagnetic fields, acoustic fields, electroacoustic
fields, and magnetoacoustic fields all from “the principle
of least action” point of view.

VI
For the source free region ¥V, (11) is reduced to

J=f0°° dffy(%(E*.D—H-B*)+ —;—(E-D*—H*-B)

APPENDIX

+ —21—(mw2u*-u—-S: ™)+ %(mwzu* u—S*: T)) dv. (A1)

f (0*-V,T—T*:V, u+mou*-u+S:T*— E-D*—V,-D*~V,¢*-D ) ds— f (T-u*)n dl
s C+C_,

2 (38)

jf (i, (T-u* — T*-u+¢*D—o¢D*)) ds
N

where
D(x,y)=&(x,y) E(x.y)+ e(x,) : S(x.y)
T(x,y)=~e(x,y)E(x,y)+e(x.9):8(x,p). (39)
The variational expression given by (38) coincides with
that obtained by Makimoto et al. [3]. The conditions

which must be satisfied by the trial functions are given as
follows:

On the other hand, by assuming that electroacoustic fields
satisfy the Maxwell’s equations and the Newton’s equa-
tion, the following equations are derived.

V-(E x H*)=jw(E-D*— H*-B)

Ve(—v*T)=—jo(mou*-u—8*:T). (A2)

Substituting (A2) and its complex conjugation into (Al)
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Fig. 4. Surface S(=S;+ S,+ S,,) used in the evaluation of integration
in (A3). §,, is a cylindrical side surface with infinite radius, and §,
and S, are parallel surfaces transverse to the propagation direction of

the wave guiding structure.

and applying Gauss’ theorem, we get

J=.’;°° df

S+S,

~(-27%(E><H*—E*><H— v-T*+v*-T))-n ds. (A3)

Since n X E, n X H, v, and T-n must be continuous across
the discontinuity surface S, the integration over S, in
(A3) is zero. n X E or n X H must be zero on the resonator
surface S for electromagnetic fields, and T-n or v must be
zero on S for acoustic fields. Hence J=0. As shown in
Fig. 4, the surface S consists of S;, S,, and S,. J given by
(A3) vanishes for a propagation mode because (E X H*)-n
and (v T*)-n are zero on S, and also the unit normal

vectors n on S, and S, direct to opposite directions.
Therefore, we can conclude that the action J must be zero
for the correct resonant modes and propagation modes.
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