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Systematic Derivation of Variational
Expressions for Electromagnetic

and/or Acoustic Waves
KATSUMI MORISHITA, MEMBER, IEEE, AND NOBUAKI KUMAGAI, SENIOR MEMBER, IEEE

Abstract-A systematic proeednre generalized to derive the vmiational

expressions for electromagnetic mrd/or acoustic field problems is pro-

posed. It is showu that the variational expressions useful to treat the

systems involving electromagnetic waves or acoustic waves or both can be
formulated systematically all from the simple and basic principle of least

action point of view.

I. INTRODUCTION

A WIDESPREAD variety of miniaturized microwave

circuits and functional devices can be realized by

means of the coupling between electromagnetic waves and

acoustic waves. However, the theoretical analysis of those

circuits and devices is not easy, since both Maxwell’s

equations and Newton’s equation must be solved simulta-

neously. Therefore, the suitable approximate methods of

analysis are desired. The variational method is one of the

powerful techniques to treat such problems.
In applying the variational method, the most important

and difficult problem is to find the appropriate variational

expressions. The authors have proposed previously the

unified procedure to derive the variational expressions for

the electromagnetic field problems from the principle of

least action point of view [1]. In the present paper, not

only the electromagnetic fields but also the acoustic fields

are taken into account, thereby enabling one to derive the

various variational expressions for the electromagnetic

and/or acoustic field problems systematically from the

same principle. To make clear the point of an argument,

discussions are limited to the system in which the coupling

occurs between the electric fields and the acoustic fields,

i.e., the electroacoustic wave systems. However, the

method given in this paper is applicable to derive the

variational expressions for the magnetoacoustic wave sys-

tems as well. As typical examples, the variational expres-

sions for a resonant frequency and a propagation constant

of the electroacoustic wave systems are derived systemati-
cally all from the least action principle.

II. THE PRINCIPLE OF LEAST ACTION

The action J for the system which contains both elec-

tromagnetic waves and acoustic waves consists of three
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terms as follows:

J=J~+Jf~+J~ (1)

where Jf, J~, and Jf~ represent, respectively, the terms
relating to the electromagnetic field, the acoustic field and

the coupling between them. Let us assume that the materi-

als involved are linear but inhomogeneous and anisotropic

in general. The action Jf is then expressed as [1]

– H(r,t).t(r, t).qt’, t)}

)+/4 (r, t)J(r, t) –p(r, t)~(r, t) do (2)

(3)

where r and t are the vector distance from the origin and

the time, E and H are the electric and the magnetic field

intensities, A and @ are the vector and the scalar poten-

tials, J and p are the electric current density and the

electric charge density, and .4and ~ are the tensor permit-

tivity and the tensor permeability, respectively. tO is the

initial time and tl is the final time.

The action J~ relating to the acoustic field is defined as

Jm=J~’d~JJ+~(r)(w):+S(r,t):.(r,t):S(r,t)

)+ F(r, t).u(r, t) dv (4)

S(r, t) = +
{ ‘1Vu(r,t) + (Vu(r,t)) =V.u(r,t) (5)

where m and u are the mass density of the medium and

the particle displacement field, S is the strain field, F and

e are the body force and the elastic stiffness constant,

respectively, and the tilde - designates a transposed
tensor.

Limiting our discussions to the electroacoustic wave

systems, the term Jf~ relating to the coupling between the

electromagnetic field and the acoustic field is given as

+ S(r,t): g(r,t)”E(r, t)})do (6)
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where e and g are the piezoelectric stress constants. Using

the foregoing equations, (1) is reduced to

auz 1

()
+A.J–p~+~m ~ –

)
#: z’+F“u do (7)

where

D(r, t) = t(r, t) .E(r, t) + e(r, t): S(r, t),
Z’(r, t) = –g(r, t) “E(r, t) + c(r, 4: S(r, 0,

B(r, t) = J(r, t) .H(r, t) (8)

and T is the stress field. In particular, in the source free

case (J= O, p= O, F= O), (7) is reduced to the following

form by using the quasistatic approximation (E= – V+):

This expression coincides with the equation given by Auld

[2]. In other words, (7) contains Auld’s equation (9) as its

special case.

Let us consider next another expression of the principle

of least action for the electroacoustic field in the

frequency domain. Extending the time interval [to,t,]to

(– m, m) and applying Fourier transformation, the in-

tegration with respect to time t in (7) becomes the integra-

tion with respect to the frequency j, and thus the time

domain problem of the electroacoustic fields can be trans-

formed into the frequency domain problem. Assuming

that the materials involved are dissipationless, and have

neither permanent electric polarization nor permanent

magnetic polarization, the components of the tensor

material constants have the following relations:

&v= Ej?, Fg = Pj?
evk = gj~i, Cvkl = &g (10)

and the stress matrix T is symmetric. Making use of (10),

the time domain expression (7) becomes the frequency

domain expression in the form

where the terms designated as cc represent the complex

conjugate of the first two terms on the right-hand sides of

the preceding equations, S is the surface which encloses

the volume V, and Sd is the discontinuous boundary of

the materials involved. Therefore, in order to make J
stationary, A, +, and u in the region where the materials

are continuous must satisfy the following:

V.D=p (15)

V XH=juD+ J (16)

V. T=–mu2u– F. (17)

Further, from the frequency domain expression of (3), the

following is yielded:

V)(E= –juB (18)

where

B= VXA. (19)

Equations (15)–(18) represent the Maxwell’s equations

and the Newton’s equation. It should be pointed out,

therefore, that if A, O, and u are determined in such a

manner that for those A, @, and u the action J becomes

stationary, the Maxwell’s equations, and the Newton’s

equation are satisfied. In other words, the physically re-

alizable electromagnetic and acoustic fields satisfying the

Maxwell’s equations and the Newton’s equation can be

derived from the least action principle.

III. VARIATIONAL EXPRESSIONSFOR RESONANT

FREQUENCY

In this section, we shall derive the variational expres-

sions for the resonant frequency of the electroacoustic

resonating systems from the action J obtained in the

preceding section. We will assume that the resonating

system is composed of the linear, nondispersive, and dis-

J= ~[wdf~ (E* .;*E– H* .@H+A.J* +A* .J–p@* ‘p”+
o v

+S*:g.E+S:g* .E*+mti%*-u- S*:c:S+F.u* +P-u)du. (11)

The first-order variations of the action J due to the small

variations in +, A, and u are derived, respectively, as

8J+ ==1* df~v@@*(V D-p)) dv

8JA==~m df~(~A* .(jtiD+J-VXH))do
o

v +~mdf~+~( Hx8A*)w dY+CC (13)

sipationless piezoelectric materials. The resonating system

is assumed to be source free, i.e., J= O, p= O, and F= O in

the region V (Fig. 1). Then, the action J given by (11) is

reduced to

~=~m ~f~~E*~E-H*fiH+S*~E

+S:g*.E*+m&* .u-S*:c:S)do (20)

where V is the region within the resonator. In (20), inde-

pendent variables are A, +, and u. Let us transform A, O,
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In

Fig. 1. Resonator. Volume V enclosed by surface S. Sd indicates the
surface across which materials involved change discontinuously. n is a
unit vector normal to the boundary surface.

L=~ (E*”&E+H*.~.H+ mv*w+S* :c:S
v

)
–i H*. VXE– E*. VXH– U*. (V. T)– V,v:~} do

J

j——
J( H X E* + Tw”).n h.

@ s+s~
(26)

The subscript i will be omitted hereafter for simplicity.

The stationary problem for J is thus reduced to that for L.
Since L given by (26) is zero for the correct values of the

field quantities E, H, v, and S as shown in the Appendix,

we obtain the variational expression for the resonant

frequency of the electroacoustic resonating systems as

follows:

j/v(H*. VXE– E*” VXH–v*”(V”T)– V,v:P)dv+j~ (Hx E*+ T-v*)w d
s+s~

a = (27)

J( E*-& E+ H*. fi.H+mtr*w+S* :c:S) dv
v

and u into E, H, v, and S by means of the following:

E= –juA – V@

H=~-~.Vx/f

v =juu

s= V,u (21)

where v is the particle velocity. Further, substituting the

following identity

V~v*:Z’= V.(Tw*)–v*. (V. T) (22)

into (20) and applying the Gauss’ theorem, we get the

action for J in the form

J=
I J(

m df E*.& E+ H*.~H+mv*w+S*:c:S
o v

where E, H, v, and S are the functions of position vector

r, and T is given by

T(r) = – g(r).E(r) + c(r): S(r). (28)

The trial functions for E, H, v, and S in (27) must satisfy

the following conditions:

1) n x 8E and 8V are zero on S. Note that if S is a

magnetic wall, the former condition (n x 8E = O on S) is

not required, and if S is a stress-free boundary, the later

condition (&= O on S) is not required.

2) n x 8E and t3v are continuous across S~.
In the quasi-static case, E and H in (27) can be ex-

pressed as

E(r) = – V+(r)

H(r) = O. (29)

Substituting (29) into (27), we get the variational expres-

)
sion for the resonant frequency of the electroacoustic

– ~ H*. V X E – E*. V X H– v*. (V. T) – V,V: F } dv resonating systems under the quasistatic approximation as
w{

‘~~ df~+~~~{HXE*+Tv*})nd.

follows:

(23)
-j~v(v*. (V T)+ V,v: ~) dv+j~ (Tw*).n a%

Since the electroacoustic field in a resonator can be ex- u=
s+s~

pressed by a linear combination of the electroacoustic J(vV$*.&V$+mv* w+ S*:c:S)dv
fields of the individual resonant modes, the field quanti-
ties, I?(r, O) for instance, can be written in the form (30)

E(r,ti) = ~ ?3(L0–wi)Ei(r) (24) where
i T(r) = g(r). V+(r)+ c(r): S(r). (31)

where Ei(r) and tii are the electric field and the resonant

frequency of the ith mode, respectively, and tl(ti – Q,)

signifies the delta function. Substituting (24) into (23), From the first-order variation of a given by (30), the

carrying out the integration with respect to the frequency conditions which must be satisfied by the trial functions

f, and assuming that there exists only ith mode alone at for $, v, and S can be obtained as follows:

t=–co, we get 1) &# and 60 are zero on S. Note that if S is a

J= L8(0) (25)
stress-free boundary, the later condition (8v = O on S) is

not required.

where 2) & and & are continuous across S&
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Further, by setting E= H= O in (27), we obtain a varia-

tional expression for the resonant frequency of the

acoustic wave resonator. On the contrary, if we set v = S

= O, (27) becomes a variational expression for the reso-

nant frequency of the electromagnetic wave resonator

which coincides with the result obtained previously [1].

IV. VARIATIONAL EXPRESSIONSFOR PROPAGATION

CONSTANT

Let us derive next the variational expressions for the

propagation constant of the electroacoustic waves travel-

ing along a uniform wave guiding system. It is assumed

that the materials involved are inhomogeneous and aniso-

tropic, in general, but are linear, nondispersive, and dis-

sipation free. Fig. 2 illustrates the wave guiding system

under consideration which is made of the piezoelectric

material and is uniform in a direction of wave propaga-

tion .2.
Tc) derive the variational expressions for the propaga-

tion constant, we divide the volume integral in (26) into

the surface integral over the transverse plane ll(xy plane)

and the integral along the propagation axis z. Further,

transforming the integration with respect to z into the

integration with respect to the propagation constant ~ by

performing Fourier transformation, the following equa-

tion is obtained.

“E(x,y,/3 ) +dI(x,Y,/3 )* OL(X,Y)+H(X,Y>p )

+W’z(x,y)t)(x,y,p )“w(x,y,p )

+(.ds(x,y,p )* : C(x,y) : S(x,y,p )

–j{H(x,y, B )* “ v,x E(x,Y,8 )

–E(x,y,/3 )*. V, XH(x,y,~ )

– o(x,y,/? )* “ V,”?’(X,Y, P )

– v,.o(x,y,/3 ) : qx,y,~ )*}

+BizO {E(x,Y,B )X H(X,Y,B )*

– H(x,y,~ ) X E(x,y,~ )*

– T(x,y,p )W(x,y>p )*

– Z-(x,y,p)”w(x,y,p )}) 6!s

-LJ (MX>Y,B)XE(%Y>P)*
c+c~

)+~(X,y,/.? )“l(X,y,~ )*)-rl dl . (32)

In the foregoing equation, C represents a closed contour

in the transverse plane as shown in Fig. 3. For the open-

type wave guiding structure, C must be a closed contour

enclosing the wave guiding structure at infinity, while in

687

Fig. 2. Wave guiding structure containing inhomogeneous and aniso-
tropic materials. Direction of wave propagation is in z axis along

which the structure is uniform.

Fig. 3. Contours used in the evaluation of integration,

the case of the closed metallic waveguide, C is a cross-

sectional boundary of the guide wall. cd indicates the

line in the transverse plane across which the material

constants change discontinuously. E(x, y, /3) and

H(x, y, /3) are the Fourier transforms of E(r) and H(r),

and Vi and Vt, indicate the transverse parts of the operator

V and V,, respectively.
The electroacoustic fields of the wave propagating in

the z direction can be expressed in terms of the linear

combinations of the electroacoustic fields of each propa-

gation mode. Hence the field quantities, E(x,y, /?) for

instance, can be written in the form

~(x,Y,p )= z ~(~+ &)Ei(~,y) (33)
i

where Ei(x,y) represents the electric field of the ith mode,

and /3, is its propagation constant. Substituting (33) into

(32), carrying out the integration with respect to the

propagation constant /3, and assuming that there exists
only ith mode alone at t = – m, we get

where

(34)

JM= (tiE*,6.E+aH* .fi,H+umo*.u+uS* :c:S
s

–j(H*. V, XE– E*. VtXH–v*. Vt. T–Vt,v:P)

–/3izO(EXH*-HXE* -TVY*-PW))A

–j! (Hx E* + T.v*)on dz.
c+c~

(35)
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The subscript i has been omitted for simplicity. Thus the 1) c$u and &# are zero along C. Note that if C is a
stationary problem for L is reduced to that for M, and stress-free boundary, the former condition (tiu = O along

hence we can determine the correct values of E, H, u, S, C) is not required.

and ~ in such a way as M becomes stationary for the 2) au and /l@ are continuous across Cd.
correct values of those quantities. M given by (35)

vanishes for the correct values of E, H, o, and S as shown V. CONCLUSION

in the Appendix. Therefore, by steps similar to those used A systematic approach generalized to derive the varia-
in the preceding section, we get the variational expression tional expressions for not only electromagnetic field but

for the propagation constant fl as follows: also acoustic field problems has been proposed. It has

J(aE*.2.E+aH* ”~H+umv*.v+aS* :c:S–j(H*. Vt XE– E*. Vt XH–@” Vt”T-Vt,o: ~)) &
s

-J1

p=

(HxE* + Tw*)vI dl
c+ cd

J( (

(36)

i=” ExH*– HxE*– Tw*-Pw))A
s

where the variables E, H, v, and Sin (36) are functions of

the transverse coordinates x and y, and T is given by

T(x,y) = - ~(x,y)oE(x,y) + C(X,y) : S(x,y). (37)

By calculating the first variation of /?, we get the condi-

tions of the functions for E, H, v, and S as follows:

1) n x 8E and ik are zero along C. Note that if C is a

magnetic wall, the former condition (n X 8E = O along C)

is not required, and if C is a stress-free boundary, the later

condition (&Y = O along C) is not required.

2) n x L3E and i3v are continuous across C&

By changing the line integral terms in (36) appropriately,

the alternate variational expressions can be yielded [1].

The conditions to the trial functions are altered also from

those stated above.

In the quasi-static case, E and H in (26) can be ex-

pressed in the form given by (29). According to the similar

procedure as before, divide the volume integral into the

surface integral over the transverse plane S(xy plane) and

the integral along the propagation axis z, and transform

the integration with respect to z into the integration with

respect to the propagation constant ~ by performing

Fourier’ transformation. Then, we get the following varia-

tional expression for a propagation constant under the

quasi-static approximation.

been shown that various variational expressions for elec-

tromagnetic fields, acoustic fields, and electroacoustic

fields can be derived systematically all from the least

action principle. To make clear the point of an argument,

the discussions have been limited to the system in which

the coupling occurs between electric and acoustic fields.

However, the method given in this paper is applicable to

derive the variational expressions for the magnetoacoustic

systems as well in which the magnetic and acoustic fields

are coupled together. It has been shown that by determin-

ing A, +, and u in such a manner that the action J

becomes stationary for those A, +, and u, the associated

electromagnetic and acoustic fields satisfy the Maxwell’s

equations and the Newton’s equation. It follows that we

can expect to derive the various variational expressions

for electromagnetic fields, acoustic fields, electroacoustic

fields, and magnetoacoustic fields all from “the principle

of least action” point of view.

VI. APPENDIX

For the source free region V, (11) is reduced to

J= ~m dj~v(; (E* “D – H-B*) + ;(EO* – H* “B )
o

)+ ~(mti?P.u-S: P)+ ~(m#u*”u–S*: T) do. (Al)

~~(u”. V,*T– F: V,$u+mu%*w+S: P–EOD*– Vt@”D*– Vt~*OD) a%– ~ (T”u”)w dl

B
C+CJ= (38)

jfs(i” (Tw* – P “u+o*D–I$D*)) a

where On the other hand, by assuming that electroacoustic fields

D(x,y) = i3(x,y)-E(x,y) + e(x,y): S(x,y) satisfy the Maxwell’s equations and the Newton’s equa-

T(x,y) = –e(x,y)”E(x,y) + C(X,Y) : S(X,Y). (39)
tion, the following equations are derived.

The variational expression given by (38) coincides with
V” (E XH*) =ja(E.D* – H* -B )

that obtained by ‘Makimoto et a~ [3]. ” The conditions V.(–v*.T)= –ja(mw%” “u– S*: T). (M)

which must be satisfied by the trial functions are given as

follows: Substituting (A2) and its complex conjugation into (Al)
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Fig. 4. Surface S(= S1+ 112+ ~~) used in the evaluation of integration
in (M). s= is a cylindrical side surface with infinite radius, and ~1
and S2 are parallel surfaces transverse to the propagation direction of
the wave guiding structure.

and applying Gauss’ theorem, we get vectors n on S1 and Sz direct to opposite directions.

Therefore, we can conclude that the action J must be zero

J= (w df (
for the correct resonant modes and propagation modes.

Jo - Js+s~

( ). &(~X~*-~*X~-O.~+V*OT) wA. (A3)
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Since n x J??,n X H, o, and Ton must be continuous across

the discontinuity surface Sd, the integration over sd in

(A3) is zero. n X E or n X H must be zero on the resonator

surface S for electromagnetic fields, and Tw or o must be

zero on S for acoustic fields. Hence J= O. As shown in

Fig. 4, the surface S consists of S1, S2, and Sw. J given b

(A3) vanishes for a propagation mode because (E x H*) “n

and (o. ~) “n are zero on S@ and also the unit normal
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